skip to main content


Search for: All records

Creators/Authors contains: "Gmyr, Robert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Maximal Independent Set (MIS) is one of the fundamental problems in distributed computing. The round (time) complexity of distributed MIS has traditionally focused on the worst-case time for all nodes to finish. The best-known (randomized) MIS algorithms take O(log n) worst-case rounds on general graphs (where n is the number of nodes). Breaking the O(log n) worst-case bound has been a longstanding open problem, while currently the best-known lower bound is [EQUATION] rounds. Motivated by the goal to reduce total energy consumption in energy-constrained networks such as sensor and ad hoc wireless networks, we take an alternative approach to measuring performance. We focus on minimizing the total (or equivalently, the average) time for all nodes to finish. It is not clear whether the currently best-known algorithms yield constant-round (or even o(log n)) node-averaged round complexity for MIS in general graphs. We posit the sleeping model, a generalization of the traditional model, that allows nodes to enter either "sleep" or "waking" states at any round. While waking state corresponds to the default state in the traditional model, in sleeping state a node is "offline", i.e., it does not send or receive messages (and messages sent to it are dropped as well) and does not incur any time, communication, or local computation cost. Hence, in this model, only rounds in which a node is awake are counted and we are interested in minimizing the average as well as the worst-case number of rounds a node spends in the awake state, besides the traditional worst-case round complexity (i.e., the rounds for all nodes to finish including both the awake and sleeping rounds). Our main result is that we show that MIS can be solved in (expected) O(1) rounds under node-averaged awake complexity measure in the sleeping model. In particular, we present a randomized distributed algorithm for MIS that has expected O(1)-rounds node-averaged awake complexity and, with high probability1 has O(log n)-rounds worst-case awake complexity and O(log3.41 n)-rounds worst-case complexity. Our work is a step towards understanding the node-averaged complexity of MIS both in the traditional and sleeping models, as well as designing energy-efficient distributed algorithms for energy-constrained networks. 
    more » « less
  2. null (Ed.)
  3. This paper focuses on showing time-message trade-offs in distributed algorithms for fundamental problems such as leader election, broadcast, spanning tree (ST), minimum spanning tree (MST), minimum cut, and many graph verification problems. We consider the synchronous CONGEST distributed computing model and assume that each node has initial knowledge of itself and the identifiers of its neighbors - the so-called KT_1 model - a well-studied model that also naturally arises in many applications. Recently, it has been established that one can obtain (almost) singularly optimal algorithms, i.e., algorithms that have simultaneously optimal time and message complexity (up to polylogarithmic factors), for many fundamental problems in the standard KT_0 model (where nodes have only local knowledge of themselves and not their neighbors). The situation is less clear in the KT_1 model. In this paper, we present several new distributed algorithms in the KT_1 model that trade off between time and message complexity. Our distributed algorithms are based on a uniform and general approach which involves constructing a sparsified spanning subgraph of the original graph - called a danner - that trades off the number of edges with the diameter of the sparsifier. In particular, a key ingredient of our approach is a distributed randomized algorithm that, given a graph G and any delta in [0,1], with high probability constructs a danner that has diameter O~(D + n^{1-delta}) and O~(min{m,n^{1+delta}}) edges in O~(n^{1-delta}) rounds while using O~(min{m,n^{1+delta}}) messages, where n, m, and D are the number of nodes, edges, and the diameter of G, respectively. Using our danner construction, we present a family of distributed randomized algorithms for various fundamental problems that exhibit a trade-off between message and time complexity and that improve over previous results. Specifically, we show the following results (all hold with high probability) in the KT_1 model, which subsume and improve over prior bounds in the KT_1 model (King et al., PODC 2014 and Awerbuch et al., JACM 1990) and the KT_0 model (Kutten et al., JACM 2015, Pandurangan et al., STOC 2017 and Elkin, PODC 2017): 1) Leader Election, Broadcast, and ST. These problems can be solved in O~(D+n^{1-delta}) rounds using O~(min{m,n^{1+delta}}) messages for any delta in [0,1]. 2) MST and Connectivity. These problems can be solved in O~(D+n^{1-delta}) rounds using O~(min{m,n^{1+delta}}) messages for any delta in [0,0.5]. In particular, for delta = 0.5 we obtain a distributed MST algorithm that runs in optimal O~(D+sqrt{n}) rounds and uses O~(min{m,n^{3/2}}) messages. We note that this improves over the singularly optimal algorithm in the KT_0 model that uses O~(D+sqrt{n}) rounds and O~(m) messages. 3) Minimum Cut. O(log n)-approximate minimum cut can be solved in O~(D+n^{1-delta}) rounds using O~(min{m,n^{1+delta}}) messages for any delta in [0,0.5]. 4) Graph Verification Problems such as Bipartiteness, Spanning Subgraph etc. These can be solved in O~(D+n^{1-delta}) rounds using O~(min{m,n^{1+delta}}) messages for any delta in [0,0.5]. 
    more » « less